Package: fcr 1.0

fcr: Functional Concurrent Regression for Sparse Data

Dynamic prediction in functional concurrent regression with an application to child growth. Extends the pffr() function from the 'refund' package to handle the scenario where the functional response and concurrently measured functional predictor are irregularly measured. Leroux et al. (2017), Statistics in Medicine, <doi:10.1002/sim.7582>.

Authors:Andrew Leroux [aut, cre], Luo Xiao [aut, cre], Ciprian Crainiceanu [aut], William Checkly [aut]

fcr_1.0.tar.gz
fcr_1.0.zip(r-4.5)fcr_1.0.zip(r-4.4)fcr_1.0.zip(r-4.3)
fcr_1.0.tgz(r-4.4-any)fcr_1.0.tgz(r-4.3-any)
fcr_1.0.tar.gz(r-4.5-noble)fcr_1.0.tar.gz(r-4.4-noble)
fcr_1.0.tgz(r-4.4-emscripten)fcr_1.0.tgz(r-4.3-emscripten)
fcr.pdf |fcr.html
fcr/json (API)

# Install 'fcr' in R:
install.packages('fcr', repos = c('https://andrew-leroux.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.18 score 15 scripts 146 downloads 1 mentions 1 exports 12 dependencies

Last updated 7 years agofrom:98d8dcd75e. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winNOTENov 13 2024
R-4.5-linuxNOTENov 13 2024
R-4.4-winNOTENov 13 2024
R-4.4-macNOTENov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:fcr

Dependencies:dotCall64facefieldslatticemapsMatrixmatrixcalcmgcvnlmeRcppspamviridisLite

Dynamic prediction in functional concurrent regression with sparse functional covariates

Rendered fromdynamic-prediction.Rmdusingknitr::rmarkdownon Nov 13 2024.

Last update: 2018-03-13
Started: 2018-03-13